Ferreira D., Oller E., Marí A., Bairán J.
Numerical analysis of shear critical RC beams strengthened in shear with FRP laminates,
ASCE Journal of Composites for Construction,
Vol. 17 (6), Article number, 04013016, pp. 1-11 (2013).


The objective of this paper is to contribute to the understanding of the shear resisting mechanisms in RC beams shear-strengthened by externally bonded fiber-reinforced polymer (FRP) sheets. For this purpose, a fiber beam model of RC frames subjected to combined normal and shear forces, previously developed by the authors, has been extended to include the response of externally bonded FRP shear reinforcement in a wrapped configuration. No FRP delamination phenomena or tensile strength reductions in the corner zones are taken into account in the model. The numerical results have been compared with eight existing experimental results and the influence of the FRP sheets on the shear strength of the beam has been studied. The effects of the contribution of FRP ratio on the concrete, on the transversal steel strains and stresses, on the longitudinal tensile steel stresses, and on the diagonal compression struts have been analyzed. It is concluded that the presence of FRP reinforcement modifies the inclinations of cracks and struts, the concrete confinement stresses, and other parameters related to the shear response, producing an interaction between the concrete, internal steel, and FRP components of the shear strength.